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Specific points connected with the application of Routh’s theory to the study of steady motions in 

systems with differential constraints are discussed, on the assumption that first integrals exist. The need 

to eliminate all dependent variables initially from the expressions for the first integrals is pointed out. 

The general conclusions are illustrated by investigating, as an example, the steady motions of a 

dynamically symmetric sphere on an a absolutely rough horizontal plane. 

According to Routh’s theory [l-9], if one of the first integrals of a system has critical 
(extremal) values, while the values of the other integrals remain fixed, this corresponds to 
(stable) real motions of the system, known as steady motions. It is assumed throughout that 
the equations of motion of the system may be written in the form 

i=f(x) (XER”, f(x)d’:R”+R”) (1) 

while the first integrals have the form 

U(x) = c = const(c E R'", U(x) E C2: R" + R") (2) 

Since the motion of a system with differential constraints is not infrequently described by 
equations containing the reactions to the constraints or undetermined Lagrange multipliers, 
the application of Routh’s theory to such systems requires special care. The point is that the 
above-mentioned equations of systems with differential constraints cannot be written in the 
form (l), since there are no corresponding differential equations for the reactions of the 
constraints or the undetermined Lagrange multipliers. To apply Routh’s theory, therefore, one 
must first eliminate the dependent velocities from the expressions for all first integrals of the 
equations of motion of the system. The functions thus obtained will be first integrals of the 
Chaplygin, Voronets, Boltzmann-Hamel, etc. versions of the equations of motion, which do 
not contain the reactions to the constraints or undetermined Lagrange multipliers; such 
equations may be written in the form_(l) and their first integrals take the form (2). 

To illustrate these conclusions, let us consider as an example the steady motions of a 
dynamically symmetric sphere on an absolutely rough horizontal plane. 

Let m be the mass of the sphere, Z1 and Z3 its equatorial and axial central moments of 
inertia, r its radius, a the distance from the sphere’s centre of mass to its geometric centre, and 
g the acceleration due to gravity. Denote the velocity of the sphere’s centre of mass and its 
angular velocity about its centre of mass by v and o respectively, and the unit vector along the 
upward vertical by y. 
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The equations of motion of the sphere, relative to its principal central axes of inertia, may hc 
written as follows: 

mi+oxmv=-mgy+R I 3 j 

j+oxy=o ; ” ! 

v+oxp=o ifi) 

Equations (3) and (4) represent the behaviour of the momentum and angular momentum of 
the sphere, respectively; Eqs (5) and (6) state, respectively, that the vector y is constant in a 
fixed system of coordinates and that the sphere moves without sliding. Here R is the reaction 
of the suIlporting plane, 0 = diag(1, Z,. 

P = (-ry, 3 

1,) is the central inertia tensor of the sphere. and 
-ry,3 -ry,+a) is the radius-vector of the sphere’s point of contact with the 

horizontal piane, relative to its centre of mass. 
Equations (3)-(6) are closed with respect to the variables v, o, y and R, but they are not in 

the form (1). since the system does not include a differential equation for the reaction of the 
plane, and Eq. (6) is not a differential equations in terms of these variables. 

System (3)-(6) admits of four first integrals: the energy integral, the Jcllett integral, the 
Chaplygin integral and a geometric integral 

2U, = mv2 + II (wf + 0:) + 1p: - 2mgay, = co (7) 

u, =I,(w,Y,+w,y2)+13W3(yg-a’r)=c, (8) 

It is clear that the expression for the total energy U, of the sphere involves the variable v 
which may be eliminated by using Eq. (6). When that is done U,, becomes 

2u; =m(wxP)2+Z,(W:+W:)+IjO:-2mgbys=c~ (11’1 

which depends, like the functions U,, U, and U, on the variables o and y only. Note that (1 1) 
and (8)-(10) are first integrals of the equations of motion of the sphere in the form 

8~+m(px<j)xp+ox9co+m[ox(pxo)]xp=mgpxy+mpx(i,xo) Cl.?, 

j+oxy=o 

(Eq. (12) is obtained from (4) by eliminating the reaction R using Eqs (3) and (6) and the 
equation v+ &x p+ ox i, = 0, which is obtained from (6) by differentiating with respect lo 
time). 

System (12), (5) is closed with respect to the variables w and y, is of the form (l), and the 
first integrals (11) and (@-(lo) are of the form (2). Consequently, Routh’s theory can be used 
to investigate its steady-state solutions. When that is done the variables v can be found 
uniquely from (6), after the solutions o and y have been determined by Routh’s method. 
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Remark. When investigating the steady motion of systems with differential constraints it is 
not always necessary to reduce the equations of motion to a form in which they involve neither 
reactions to the constraints nor undetermined multipliers. System (3)-(6) was reduced to the 
form (12), (5) by logical arguments. The integral (7) had to be reduced to the form of (11) in 
order to use Routh’s theory; otherwise, formal use of the latter would have produced 
inaccurate results [lo]. 

We will seek the critical points of the function @ when the constants of the constant 
integrals (Q-(10) remain fixed. To do this we introduce the function 

w=u, -h(U, -c,)-p(IJz -c,)+Wv(U3 -1) 

where A, p, and v are undetermined Lagrange multipliers. The conditions for this function to 
be stationary are 

awia6+ =-m~2(ry3-a)+mv~q2+Ip,-1,3cy, =O 

awlam, mm~,(~3 -u)-~v~v, +I,o, -I,hy2 =o 
aw 1 aa, P -mv,ry, + mv2ryl + Z303 - I,h(y, -a I r) - pl = 0 

aw / ily, = mv2rW3 - mv3rfo2 -A@+ -(p / Z)Z,mr203yl + vyl = 0 

aw Z &y, I -mvlrW3 + mv3’o, - Wio, - (p Z Z)Z,mr203y2 + vy2 = 0 

aw I f3y, = -mga + mv,rw2 - mv2rq -W3w3 -(pi Z)Z3mr2u3(y3 -a/ r)+vyj = 0 

v~ =(r13 -a)02 -q2°3* ‘2 =qIw3 +3 -+I 

v3 = 7y2q - r11029 Z=[ZiZ3+mr2(Zi(l-y~)+Z~(Y~-~Zr)2)]X 

If the constants of the Jellett and Chaplygin integrals satisfy the relations 

[Z,Z3+mr2Z3(+l-aZr)2]Kc, =Z3(fl-alr)c2 

then the system of equations 6W =0 will have the following respective one-parameter 
solutions 

64 =a2 =yl =y2 =o, a3 =S2=const, yf =fl 
(13) 

(Q is arbitrary), which represent zero-dimensional invariant sets (rest points) of system (12), 
(5) and correspond to permanent rotations of the sphere about a vertically located axis of 
dynamic symmetry at an arbitrary constant angular velocity, with the centre of mass in its 
lowest possible (yf = +l) or highest possible (y3 = -1) position. In that situation it follows from 
(6) and (13) that v = 0, i.e. the solutions (13) are such that the sphere’s centre of mass is fixed. 
The undetermined Lagrange multipliers for these solutions are 

hi R, p=ZF(I, +m(+r-a)2)“(R-l(fl-alr)) 

v=f(mga+Z3R[Z,h+mr(fr-a)R])(Z, +m(fr-a)2)‘1 

For arbitrary values of the Jellett and Chaplygin integrals, the system of equations SW = 0 
will also have two-parameter families of solutions 

01 =oy,. 02 =OY2r 03 =wy,+R, y:+y; =1-y2, Y3 =Y (14) 

for which the three constants w, s2 and y satisfy one equation 
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[ 1,n + (I, - I, )wy]w + mr* (i2 + (a / r)6+0( 1 - (a / r) y ) I- mga = 0 

Formulae (14) define one-dimensional invariant sets of system (12). (5). in which the sphere 

has regular precessions. In that case it follows from (6) and (14) that v f 0. The undetermined 
Lagrange multipliers for the solutions (14) arc 

V= J,w*-mr”(Q+(a/r)~)[(~+R)+~(y-air)] 

Note that in [lo] critical points of lJ,> were sought for fixed values of the constants of the integrals (8).- 

(10). In all the steady motions of the sphere that have been determined in [LO), the centre of mass must b<~ 

fixed, whereas in the general case while the regular precession occurs, the centre of mass describes a circk 

parallel to the horizontal plane: the centre of mass is fixed only if R+(alr)o =O. 1111. 

According to Routh’s theory [l-9], the steady motions (13) and (14) are stable If the function 
U,* has a minimum value in these motions. when the constants of the integrals U,. U? and I,‘, 
take fixed values. This will certainly be the case if the second variation of W is positive definite 
on the linear manifold defined by the relations &!_I, = FU, = 611, = 0. 

For the solutions (13). these relations reduce to the form &II, = iYy, = I). Then the second 
variation 

26*W = A(&o,)* -2B(sO,)(6y,)+C(6y,)* +A(6o2)2 -2J+h,)(6y,)+C(h’,) 

is positive definite provided that AC -R’ > 0. where 

A= I, +m(+r-a)* >O, B= J,h+mr(+r-u)o 

C=(J,mr[h(fr-a)-rtt~]zk J~[J,h+mr(+r-u)o]}[J, +m(+r-u)2]w’o+mrLo’ +mp 

Taking into account that h was chosen arbitrarily, we conclude that a sufficient condition for 
the solution (13) to be stable is that at least one h exists such that AC-H’ > 0. Consequently. 
vertical rotations of the sphere are stable if 

[mr(+r-u)+J3]*w2+4mga[J,+m(fr-a)*]>0 (1.5;) 

Note that the sufficient condition (15) for permanent rotations of the sphere on a rough 
plane to be stable is identical, apart from the equality sign, with the necessary condition 
established in [ll], whereas the sufficient condition derived in [lo] from the condition that U,, 
reaches a minimum for fixed values of the constants U,, CT2 and U, was fairly rough and more 
restrictive than (15). 

For the solutions (14), the second variation of W is 

26*W = A,(6w, -w6~,)~ +A@% -06y2)2+4(%)2 +2B,2(~d6y3j+Bz(liy3)z 

and the linear manifold defined by 6CJ, = 6U, = 6U, = 0 may be Written as follows: 

c+i+ -~~,)+a~(~~~ -06y2)+01,(60,)+a,(6y,)=0 

P,@%)+P&v,)=O 

A, = I, + ,(u - ry)* + mr*yz > 0, A, = I, + m(u - pl)* + mr*y? > 0 

B, =J,+mr’(l-y*)>O, B,, =-[J,+mr*(l-y2)]o+mr2y(R+(o!r)o) 
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B* =[I1 +m+y*jp -mr*(Q+(a/r)w)x 

x{co(y-alr)+[zf +mr2[/,(1-(2a/r)y+y2)-~,YZ]]}x 

x[z~l,+mr~[l,(l-ylf+z~(y-n/~)]]-l(~+~)] 

a, =I,y,, a2=Ily2, ag=13(y-n/r), a4=13(coy+S2)-21,cuy 

p3 =z~z~+mr~[z*fl-y*)+z~(y-alr)2], p4 =mr2[z,(y-a/r)-z*y](wy+n) 

The function i?W is positive definite on this linear manifold with respect to the variables 
60, --c&y,, ti2 -oGyz, &B,, isy3 if the fifth- and sixth-order principal diagonal minors of the 
determinant 

0 0 a, a2 a3 a4 

0 0 0 0 P3 l-4 

hCCL1 0 A, 0 0 0 

a2 0 0 A2 0 0 

a3 I% 0 0 4 4 
a4 P4 0 0 312 8, 

I 

are positive. Noting that A, = Zt(A,y: + A,y#: 7 0, we conclude that regular precessions of the 
sphere on the rough plane are stable with respect to the variables o, -coyI, co, -oy2, o, and 
y3, provided that 

A, s A = A,A,(@, -a,&)’ +(A+$ +A2a?)(eP: -2&&& +&P+O (16) 

The explicit form of this condition is extremely lengthy and will therefore be omitted. 
Condition (16) is identical, apart from the equality sign, with the corresponding necessary 

condition of [ll]. 
In conclusion we note that a dynamically symmetric sphere is a special case of a body of 

revolution, whose steady motions on a rough plane have been investigated in detail in various 
ways [ll]. The results presented above are in complete agreement with those known from 
previous studies, which cannot be said of the results obtained in /lo]. 

The research reported here was carried out with the financial support of the Russian Fund 
for Fundamental Research (93-013-16242). 
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